pyridinyl)ethenyl]amino-3-dimethylaminopropenoates. The Synthesis
of Substituted β-Amino- α, β-didehydro- α-amino Acid Derivatives
Lucija Jukić [a], Simon Rečnik [a], Simona Golič Grdadolnik [b], Jurij Svete* [a], Branko Stanovnik* [a]

[a] Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
[b] L01, Department of NMR and Molecular Modelling, National Institute of Chemistry,
Hajdrihova 19, POB 3440, 1000 Ljubljana, Slovenia
Received December 15, 2000

Abstract

Alkyl (Z)-2-[(E)-2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3-dimethylaminopropenoates 7 and $\mathbf{8}$ were prepared from ethyl 2-pyridinylacetate (1) in two steps. Substitution of the dimethylamino group with alkyl-, aryl-, or heteroarylamines afforded the corresponding β-alkyl- 22-24, β-aryl- 25-35, and β-herteroaryl-amino- α, β-didehydro- α-amino acid 36 and 37 derivatives, intermediates for further preparation of various heterocyclic systems. The orientation around both double bonds were determined by various nmr techniques.

J. Heterocyclic Chem., 38, 859 (2001).

Recently, substituted 2-acylamino- or 2-hydroxy-3(dimethylamino)propenoates as masked α-formyl- α -amino- or α-formyl- α-hydroxy acid derivatives, and 2-[(2,2-disubstituted ethenyl)amino]-3-(dimethylamino)propenoates and related compounds have been prepared in our laboratory and used as reagents for preparation of various heterocyclic systems, such as 2 H -pyran-2-ones and fused pyran-2-ones, fused pyridinones, pyrimidinones [110], imidazole-4-carboxylates [11], alkyl 1-acyl-3,4-disubstituted pyrrole-2-carboxylates [12,13], dialkyl 3-amino-pyrrole-2,4-dicarboxylates and 5H-pyrrolo[3,2-d]pyrimidine derivatives [14], and (Z)-aplysinopsin analogs in a simple and stereoselektive manner [15]. Alkyl 2-[2-cyano-2-(2-pyridinyl)ethenyl]amino-3-dimethylaminopropenoates have been transformed into alkyl 2-[2-cyano-2-(2-pyridinyl)ethenyl]amino-3-[2-methoxycarbonyl-4-(2-pyridinyl)-1H-pyrrol-3-yl]aminopropenoates [16]. Chiral 3-(dimethylamino)propenoate analogs derived from L-glutamic and L-pyroglutamic acid have been used for the preparation of (S)-3-(heteroaryl)alanine and (S)-3-
(heteroaryl)lactic acid derivatives, as well as for the preparation of heterocyclic systems with an α-amino acid structural element incorporated into the cyclic system [17-23].

In continuation of our studies in this area, we report the synthesis of alkyl (Z)-2-[(E)-2-alkoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3-dimethylaminopropenoates 7 and 8, and their further transformations with alkyl-, aryl-, and heteroarylamines into β-alkyl (aryl and heteroaryl)aminoα, β-didehydro- α-amino acid derivatives 22-37 as intermediates for preparation of various heterocyclic systems.

Alkyl (E)- N-[2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl)glycinates 5 and $\mathbf{6}$ were prepared by heating a mixture of ethyl 2-pyridinylacetate (1) and N, N-dimethylformamid dimethylacetal (DMFDMA) or (t-butyloxy)bis(dimethylamino)methane (Bredereck's reagent) at $85^{\circ} \mathrm{C}$ for 1.5 hours in an argon atmosphere to give ethyl 3-(dimethylamino-2-(2-pyridinyl)propenoate (2) followed, without purification, by treatment with an alkyl glycinate hydrochloride 3,4 in ethanol by heating at reflux temperature for 1.5 hours in $80-$ 86% yield. They were transformed with (t-butyloxy)-

Scheme 1

bis(dimethylamino)methane (Bredereck's reagent) in dry toluene by heating under reflux for several hours into alkyl (Z)-2-[(E)-2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-dimethylamino-propenoates 7 and $\mathbf{8}$ in 91% and 62% yield, respectively. (Scheme 1).

The dimethylamino group in compounds $\mathbf{7}$ and $\mathbf{8}$ can be easily substituted with benzyl amines $\mathbf{9 - 1 1}$, aromatic amines $\mathbf{1 2 - 2 0}$, and heteroaromatic amines, such as 2-amino-5-chloropyridine (21) in acetic acid at room temperature to form β-alkylamino- α, β-didehydro- α-amino
acid derivatives 22-24 in 15-43\% yield, β-arylamino- α, β -didehydro- α-amino acid derivatives $\mathbf{2 5}$ - $\mathbf{3 5}$ in $13-78 \%$ yield, and β-heteroarylamino- α, β-didehydro- α-amino acid derivatives 36 and 37 in 62 and 73% yield, respectively. (Scheme 2). Experimental and analytical data are given in Tables 1, 2, 3, and 4.

Structure Determination.
The structures of the new compounds were determined by ${ }^{1} \mathrm{H}$ nmr spectra and Heteronuclear Multiple Bond Correlation
12
pyridinyl)ethenyl]amino-3-dimethylaminopropenoates
Table 1
Experimental and Analytical Data

Compound	Yield (\%)	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	Molecular formula Analyses	Number of isomers (ratio)
5	86	95-97 from ethyl acetate/n-heptane (1:6)	$\begin{aligned} & \quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \\ & \text { Calcd: C, } 59.08 ; \mathrm{H}, 6.10 ; \mathrm{N}, 10.60 \\ & \text { Found: C, } 58.85 ; \mathrm{H}, 5.86 ; \mathrm{N}, 10.40 \end{aligned}$	1
6	80	$\begin{gathered} 57-61 \\ \text { from ethyl acetate/n-heptane }(1: 6) \end{gathered}$	$\begin{aligned} & \quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4-} \\ & \text { Calcd: } \mathrm{C}, 60.42 ; \mathrm{H}, 6.52 ; \mathrm{N}, 10.07 \\ & \text { Found:C, } 60.43 ; \mathrm{H}, 6.72 ; \mathrm{N}, 10.00 \end{aligned}$	1
7	91	$115-117$ from ethyl acetate/n-heptane (1:3)	$\begin{aligned} & \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \\ & \text { Calcd: C, } 60.18 ; \mathrm{H}, 6.63 ; \mathrm{N}, 13.16 \\ & \text { Found:C, } 60.11 ; \mathrm{H}, 6.88 ; \mathrm{N}, 13.05 \end{aligned}$	1
8	62	63-69 from ethyl acetate/n-heptane (1:3)	$\begin{aligned} & \quad \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \\ & \text { Calcd: C, } 61.25 ; \mathrm{H}, 6.95 ; \mathrm{N}, 12.60 \\ & \text { Found:C, } 61.23 ; \mathrm{H}, 7.23 ; \mathrm{N}, 12.57 \end{aligned}$	1
22	36	106-108 from ethanol/water	$\begin{aligned} & \quad \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \\ & \text { Calcd: C, } 66.13 ; \mathrm{H}, 6.08 ; \mathrm{N}, 11.02 \\ & \text { Found:C, } 66.31 ; \mathrm{H}, 6.17 ; \mathrm{N}, 10.98 \end{aligned}$	1 [a]
23	43	105-108 from ethanol/water	$\begin{aligned} & \quad \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} \\ & \text { Calcd: C, } 64.22 ; \mathrm{H}, 6.12 ; \mathrm{N}, 10.21 \\ & \text { Found:C, } 64.43 ; \mathrm{H}, 6.24 ; \mathrm{N}, 10.23 \end{aligned}$	1 [a]
24	15	103-107 from acetone	$\begin{aligned} & \quad \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6} \\ & \text { Calcd: C, } 59.99 ; \mathrm{H}, 5.49 ; \mathrm{N}, 12.72 \\ & \text { Found:C, } 59.63 ; \mathrm{H}, 5.82 ; \mathrm{N}, 11.80 \end{aligned}$	1 [a]
25	23	$\begin{aligned} & 132-144 \\ & \text { from methanol } \end{aligned}$	$\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \\ \text { Calcd: C, } 65.38 ; \mathrm{H}, 5.76 ; \mathrm{N}, 11.44 \\ \text { Found:C, } 65.31 ; \mathrm{H}, 5.96 ; \mathrm{N}, 11.43 \end{gathered}$	$\begin{gathered} 4[b] \\ (11: 9: 2: 1) \end{gathered}$
26	17	$\begin{aligned} & 128-130 \\ & \text { from methanol } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \\ & \text { Calcd: C, } 63.47 ; \mathrm{H}, 5.83 ; \mathrm{N}, 10.57 \\ & \text { Found:C, } 63.75 ; \mathrm{H}, 5.90 ; \mathrm{N}, 10.55 \end{aligned}$	1 [a]
27	78	$\begin{aligned} & 129-155 \\ & \text { from methanol } \end{aligned}$	$\begin{aligned} & \quad \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \\ & \text { Calcd: C, } 63.47 ; \mathrm{H}, 5.83 ; \mathrm{N}, 10.57 \\ & \text { Found:C, } 63.54 ; \mathrm{H}, 6.09 ; \mathrm{N}, 10.49 \end{aligned}$	4 [b, c]
28	60	$163-178$ from methanol/toluene	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{4} \\ & \text { Calcd: C, } 62.33 ; \mathrm{H}, 5.23 ; \mathrm{N}, 10.90 \\ & \text { Found:C, } 62.60 ; \mathrm{H}, 5.33 ; \mathrm{N}, 10.96 \end{aligned}$	$\begin{gathered} 4[b] \\ (11: 6: 1: 1) \end{gathered}$
29	66	144-169 from methanol	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClFN}_{3} \mathrm{O}_{4} \\ & \text { Calcd: C, } 57.22 ; \mathrm{H}, 4.56 ; \mathrm{N}, 10.01 \\ & \text { Found:C, } 57.25 ; \mathrm{H}, 4.64 ; \mathrm{N}, 10.02 \end{aligned}$	$\begin{gathered} 4[b] \\ (13: 9: 2: 1) \end{gathered}$
30	53	156-162 from methanol	$\begin{aligned} & \quad \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{4} \\ & \text { Calcd: } \mathrm{C}, 53.82 ; \mathrm{H}, 4.52 ; \mathrm{N}, 9.42 \\ & \text { Found:C, } 53.75 ; \mathrm{H}, 4.48 ; \mathrm{N}, 9.37 \end{aligned}$	$\begin{aligned} & 2[d] \\ & (6: 1) \end{aligned}$
31	13	$129-132$ from methanol/toluene	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{4}$ Calcd: C, $53.82 ; \mathrm{H}, 4.52 ; \mathrm{N}, 9.42$ Found:C, $54.37 ; \mathrm{H}, 4.56 ; \mathrm{N}, 9.42$	$\begin{aligned} & 2[d] \\ & (7: 1) \end{aligned}$
32	31	$\begin{aligned} & 138-160 \\ & \text { from methanol } \end{aligned}$	$\begin{aligned} & \quad \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6} \\ & \text { Calcd: C, } 58.25 ; \mathrm{H}, 4.89 ; \mathrm{N}, 13.58 \\ & \text { Found:C, } 58.01 ; \mathrm{H}, 4.87 ; \mathrm{N}, 13.52 \end{aligned}$	$\begin{gathered} 2[\mathrm{~d}] \\ (10: 1) \end{gathered}$
33	45	$\begin{aligned} & 158-162 \\ & \text { from methanol } \end{aligned}$	$\begin{aligned} & \quad \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6} \\ & \text { Calcd: C, } 58.25 ; \mathrm{H}, 4.89 ; \mathrm{N}, 13.58 \\ & \text { Found:C, } 58.19 ; \mathrm{H}, 4.86 ; \mathrm{N}, 13.59 \end{aligned}$	$\begin{aligned} & 2[d] \\ & (8: 1) \end{aligned}$
34	67	121-135 from ethanol	$\begin{aligned} & \quad \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} \\ & \text { Calcd: C, } 64.22 ; \mathrm{H}, 6.12 ; \mathrm{N}, 10.21 \\ & \text { Found:C, } 64.20 ; \mathrm{H}, 6.22 ; \mathrm{N}, 10.34 \end{aligned}$	2 [c, d]
35	37	159-165 from ethanol	$\begin{aligned} & \quad \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClFN}_{3} \mathrm{O}_{4} \\ & \text { Calcd: } \mathrm{C}, 58.14 ; \mathrm{H}, 4.88 ; \mathrm{N}, 9.68 \\ & \text { Found:C, } 58.07 ; \mathrm{H}, 5.01 ; \mathrm{N}, 9.54 \end{aligned}$	1 [a]
36	62	192-194 from ethanol	$\begin{aligned} & \quad \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{4} \\ & \text { Calcd: C, } 56.65 ; \mathrm{H}, 4.75 ; \mathrm{N}, 13.91 \\ & \text { Found:C, } 56.67 ; \mathrm{H}, 4.72 ; \mathrm{N}, 13.97 \end{aligned}$	1 [a]
37	73	193-196 from ethanol/water	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{4} \\ & \text { Calcd: C, } 57.63 ; \mathrm{H}, 5.08 ; \mathrm{N}, 13.44 \\ & \text { Found:C, } 57.77 ; \mathrm{H}, 5.10 ; \mathrm{N}, 13.55 \end{aligned}$	1 [a]

Table 2
${ }^{1} \mathrm{H}$ nmr Data

Compound	MHz Solvent	δ (tetramethylsilane)
5	$\begin{gathered} 300 \\ \mathrm{CDCl}_{3} \end{gathered}$	$\begin{aligned} & 1.33\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.79(3 \mathrm{H}, \mathrm{~s}, \mathrm{COOMe}), 4.12\left(2 \mathrm{H}, \mathrm{~d}, \mathrm{CH}_{2}\right), 4.24\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.97\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right), \\ & 7.62\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}\right), 7.92(1 \mathrm{H}, \mathrm{~d}, \mathrm{CHNH}), 8.31\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}\right), 8.42\left(1 \mathrm{H}, \text { ddd, H } \mathrm{H}_{6}\right), 11.02\left(1 \mathrm{H}, \mathrm{br} . \mathrm{CHNH}, \mathrm{CHN}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 4}=8.5 \mathrm{~Hz},\right. \\ & \mathrm{J}_{\mathrm{H} 3 \mathrm{H} 5}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 6}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 5}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{NH}}=6.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}= \\ & 7.1 \mathrm{~Hz} . \end{aligned}$
6	$\begin{gathered} 300 \\ \mathrm{CDCl}_{3} \end{gathered}$	$\begin{aligned} & 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.10\left(2 \mathrm{H}, \mathrm{~d}, \mathrm{CH}_{2}\right), 4.24\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH} \mathrm{CH}_{3}\right), 4.25(2 \mathrm{H}, \mathrm{q}, \\ & \left.\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.96\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right), 7.61\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}\right), 7.93(1 \mathrm{H}, \mathrm{~d}, \mathrm{CHNH}), 8.31\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}\right), 8.41\left(1 \mathrm{H}, \text { ddd}, \mathrm{H}_{6}\right), \\ & 11.02(1 \mathrm{H}, \text { br.s, CHNH}), \mathrm{J}_{\mathrm{H} 3 \mathrm{H} 4}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 5}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 6}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 5}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=5.0 \mathrm{~Hz}, \\ & \mathrm{~J}_{\mathrm{CHNH}}=12.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{NH}}=6.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz} . \end{aligned}$
7	$\begin{gathered} 300 \\ \mathrm{CDCl}_{3} \end{gathered}$	$1.32\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.03(6 \mathrm{H}, \mathrm{~s}, \mathrm{CHNMe} 2), 3.71(3 \mathrm{H}, \mathrm{~s}, \mathrm{COOMe}), 4.23\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.94\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right) \text {, }$ $7.27\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{NMe}_{2}\right), 7.60\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}\right), 7.90(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.34-8.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}, \mathrm{H}_{6}\right), 11.52(1 \mathrm{H}$, br.s, CHNH), $\mathrm{J}_{\mathrm{H} 3 \mathrm{H} 4}=8.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 5}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 6}=0.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 5}=7.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=1.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=$ 7.1 Hz .
	DMSO-d ${ }_{6}$	$\begin{aligned} & 1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.00\left(6 \mathrm{H}, \mathrm{~s}, \mathrm{CHNMe} e_{2}\right), 3.59(3 \mathrm{H}, \mathrm{~s}, \mathrm{COOMe}), 4.14\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH} \mathrm{CH}_{3}\right), 7.07\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right), \\ & 7.30(1 \mathrm{H}, \mathrm{~s}, \mathrm{CHNMe} 2), 7.71\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}\right), 7.77(1 \mathrm{H}, \mathrm{~d}, \mathrm{CHNH}), 8.28\left(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}_{3}\right), 8.46\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}\right), 11.40(1 \mathrm{H}, \mathrm{~d}, \mathrm{CHNH}), \\ & \mathrm{J}_{\mathrm{H} 3 \mathrm{H} 4}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 5}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 6}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 5}=7.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=1.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=13.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}= \\ & 7.0 \mathrm{~Hz} . \end{aligned}$
8	$\begin{gathered} 300 \\ \mathrm{CDCl}_{3} \end{gathered}$	$1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.03\left(6 \mathrm{H}, \mathrm{~s}, \mathrm{CHN} M e_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.25(2 \mathrm{H}, \mathrm{q},$ $\left.\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.94\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{5}\right), 7.24\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{NMe}_{2}\right), 7.60\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}\right), 7.93(1 \mathrm{H}, \mathrm{d}, \mathrm{C} H \mathrm{NH}), 8.36\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}\right), 8.37$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}\right), 11.58(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3 \mathrm{H} 4}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 5}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 6}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 5}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=1.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=$ $4.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$.
22	$\begin{gathered} 300 \\ \mathrm{CDCl}_{3} \end{gathered}$	($2 E, 2^{\prime} E$): $1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.40\left(2 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{CH}_{2} \mathrm{NHCH}\right), 5.09$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{R}_{1} \mathrm{CH}_{2} \mathrm{NHCH}\right), 6.94-6.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}{ }^{\prime}\right), 7.26-7.39(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{H}(\mathrm{Ph})), 7.44\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{CH}_{2} \mathrm{NHCH}\right), 7.59-7.64(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 7.95(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.30-8.41\left(2 \mathrm{H}, \mathrm{m}_{2} \mathrm{H}_{3}{ }^{\prime}, \mathrm{H}_{6}{ }^{\prime}\right), 11.27(1 \mathrm{H}$, br.s, CHNH$), \mathrm{J}_{\mathrm{R} 1 \mathrm{CH} 2 \mathrm{NHCH}}=5.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 \mathrm{CH} 2 N H C H}=13.8 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{CHNH}}=9.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}$.
23	$\begin{gathered} 300 \\ \mathrm{CDCl}_{3} \end{gathered}$	($2 E, 2^{\prime} E$): $1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.72,3.80(2 \mathrm{x} 3 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{COOMe}, \mathrm{OMe}), 4.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.33(2 \mathrm{H}$, d, $\left.\mathrm{R}_{1} \mathrm{CH}_{2} \mathrm{NHCH}\right), 5.03\left(1 \mathrm{H}\right.$, br.s, $\left.\mathrm{R}_{1} \mathrm{CH}_{2} \mathrm{NHCH}\right), 6.89\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}, \mathrm{H}_{5}\right), 6.95\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.19\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}, \mathrm{H}_{6}\right), 7.44(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{R}_{1} \mathrm{CH}_{2} \mathrm{NHCH}\right), 7.62\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{4}{ }^{\prime}\right), 7.93(1 \mathrm{H}$, br.s, $\mathrm{C} H \mathrm{NH}), 8.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}{ }^{\prime}\right), 8.37\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{6}{ }^{\prime}\right), 11.28(1 \mathrm{H}$, br.s, CHNH$)$, $\mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=6.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2 \mathrm{H} 3}=\mathrm{J}_{\mathrm{H} 5 \mathrm{H} 6}=8.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 \mathrm{CH} 2 \mathrm{NHCH}}=4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 \mathrm{CH} 2 \mathrm{NHCH}}=13.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}$.
24	$\begin{gathered} 300 \\ \mathrm{CDCl}_{3} \end{gathered}$	($2 E, 2^{\prime} E$): $1.32\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 1.59\left(3 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1}(\mathrm{Me}) \mathrm{CHNHCH}\right), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.24\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$, $4.60\left(1 \mathrm{H}, \mathrm{qd}, \mathrm{R}_{1}(\mathrm{Me}) \mathrm{C} H \mathrm{NHCH}\right)$, $5.07\left(1 \mathrm{H}\right.$, dd, $\left.\mathrm{R}_{1}(\mathrm{Me}) \mathrm{CHNHCH}\right), 7.00\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.26\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1}(\mathrm{Me}) \mathrm{CHNHCH}\right), 7.46$ $\left.\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{2}, \mathrm{H}_{6}\right), 7.65\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 7.96(1 \mathrm{H}, \mathrm{d}, \mathrm{C} H \mathrm{NH}), 8.23\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{3}, \mathrm{H}_{5}\right), 8.33\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.41\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}\right)^{\prime}\right)$, $11.31(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H} 2 \mathrm{H} 3}=\mathrm{J}_{\mathrm{H} 5 \mathrm{H} 6}=6.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2 \mathrm{H} 6}=\mathrm{J}_{\mathrm{H} 3 \mathrm{H} 5}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1(\mathrm{Me}) C H \mathrm{NHCH}}=7.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1(\mathrm{Me}) C H N H C H}=13.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1(\mathrm{Me}) \mathrm{CHNHCH}}=13.6 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{CHNH}}=12.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$.

$\left(2 E, 2^{\prime} E\right)$ and $\left(2 Z, 2^{\prime} E\right)$ isomers of $\mathbf{2 5}$ were separated by radial chromatography (petrolether/ethyl acetate $=5: 1$):
$25300\left(2 E, 2^{\prime} E\right): 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.24\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.78(1 \mathrm{H}$, br.d, R R NHCH $), 6.96-$ $\left.\mathrm{CDCl}_{3} \quad 7.06\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}^{\prime}, 3 \mathrm{H}(\mathrm{Ph})\right), 7.29-7.35(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}(\mathrm{Ph})), 7.66\left(1 \mathrm{H}, \text { ddd, } \mathrm{H}_{4}\right)^{\prime}\right), 7.92\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 8.01(1 \mathrm{H}$, br.d, $\mathrm{C} H \mathrm{NH}), 8.36\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.45\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 11.53(1 \mathrm{H}$, br.s, CHNH$), \mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=2.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=12.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. By addition of $\mathrm{D}_{2} \mathrm{O}$ the doublet at $\delta=6.78 \mathrm{ppm}$ and the broad singlet at $\delta=11.53 \mathrm{ppm}$ disappear; the doublets at $\delta=7.92$ ppm and $\delta=8.01$ change into singlets.
$\left(2 Z, 2^{\prime} E\right): 1.33\left(3 H, t, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.26\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.41\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 7.63$ $\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 8.35\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.43\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 9.62\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 12.01(1 \mathrm{H}$, br.d, CHNH).
By addition of $\mathrm{D}_{2} \mathrm{O}$ the doublet at $\delta=9.62 \mathrm{ppm}$ and the broad singlet at $\delta=12.01 \mathrm{ppm}$ disappear; the doublet at $\delta=7.41 \mathrm{ppm}$ changes into singlet.
$\left(2 Z, 2^{\prime} Z\right)$ and ($2 E, 2^{\prime} Z$): $1.36\left(6 \mathrm{H}, \mathrm{t}, 2 \mathrm{x} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.76,3.83(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, 2 \mathrm{x} \mathrm{COOMe}), 4.32\left(4 \mathrm{H}, \mathrm{q}, 2 \mathrm{x} \mathrm{COOCH} \mathrm{CH}_{3}\right)$.
$25\left(2 E, 2^{\prime} E\right) \mathrm{CDCl}_{3} \quad 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.23\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{R}, \mathrm{NHCH}), 6.98-7.06\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}{ }^{\prime}\right.$, $3 \mathrm{H}(\mathrm{Ph})), 7.29-7.35(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}(\mathrm{Ph})), 7.66\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 7.92\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.36\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right)$, $8.45\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6^{\prime}}\right), 11.49(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.1 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H} 5^{\prime} \mathrm{H}^{\prime}}=4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=13.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. By addition of $\mathrm{D}_{2} \mathrm{O}$ the doublets at $\delta=6.83 \mathrm{ppm}$ and $\delta=11.49 \mathrm{ppm}$ disappear; the doublets at $\delta=7.92 \mathrm{ppm}$ and $\delta=7.99$ change into broad singlets.
$25\left(2 Z, 2^{\prime} E\right) \mathrm{CDCl}_{3} \quad 1.33\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.27$, ($2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}$), 6.96-7.05 (4H, m, H5', $\left.3 \mathrm{H}(\mathrm{Ph})\right)$, $7.30-7.35$ $(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}(\mathrm{Ph})), 7.41\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 7.63\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}\right), 8.01(1 \mathrm{H}, \mathrm{d}, \mathrm{C} H \mathrm{NH}), 8.35\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.44\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right)$, $9.62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 12.02(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.1$ $\mathrm{Hz}, \mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H} 6^{\prime}}=4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=12.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. By addition of $\mathrm{D}_{2} \mathrm{O}$ the doublets at $\delta=9.62 \mathrm{ppm}$ and $\delta=12.02 \mathrm{ppm}$ disappear; the doublets at $\delta=7.41 \mathrm{ppm}$ and $\delta=8.01$ change into singlets.
26
$300\left(2 E, 2^{\prime} E\right): 1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.16,\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.95-7.11(4 \mathrm{H}$, DMSO- $\left._{6} \mathrm{~m}, 4 \mathrm{H}(\mathrm{Ph})\right), 7.51\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{5}{ }^{\prime}\right), 7.73\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 7.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}, \mathrm{CHNH}\right), 8.26\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.48\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right)$, $9.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 12.00(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} 4^{\prime}}=8.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=7.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 C H N H}=12.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.3 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$.

Compound MHz Solvent
δ (tetramethylsilane)
$27300\left(2 E, 2^{\prime} E\right): 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.79(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}, \mathrm{COOMe}), 4.24\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.69\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right)$, $\mathrm{CDCl}_{3} \quad 6.85-7.03\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}{ }^{\prime}, 4 \mathrm{H}(\mathrm{Ph})\right), 7.66\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 7.84\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 8.00(1 \mathrm{H}$, br.d, $\mathrm{C} H \mathrm{NH}), 8.36\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right)$, $8.44\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 11.42(1 \mathrm{H}$, br.s, CHNH$), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0$ $\mathrm{Hz}, \mathrm{J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=13.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$.
$\left(2 Z, 2^{\prime} E\right): 1.33\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.77,3.84(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{OMe}, \mathrm{COOMe}), 4.26\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.33(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 7.63\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 8.34\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.43\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 9.54\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 11.93(1 \mathrm{H}$, br.d, CHNH). The signals for $\left(2 Z, 2^{\prime} Z\right)$ and $\left(2 E, 2^{\prime} Z\right)$ isomers are overlapped.
$28300\left(2 E, 2^{\prime} E\right): 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.24\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.78(1 \mathrm{H}$, br.d, R R , NHCH $), 6.93-$ $\mathrm{CDCl}_{3} \quad 7.06\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}^{\prime}, 4 \mathrm{H}(\mathrm{Ph})\right), 7.66\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 7.82\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 7.99(1 \mathrm{H}$, br.d, CHNH$), 8.34\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.43$ $\left.1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 11.43(1 \mathrm{H}$, br.s, CHNH$), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 5^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 6^{\prime}}=0.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=13.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$.
($2 \mathrm{Z}, 2^{\prime} E$): $1.33\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.26\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 7.63(1 \mathrm{H}$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 8.33\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.43\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 9.59\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 12.00(1 \mathrm{H}$, br.d, CHNH$)$. $\left(2 Z, 2^{\prime} Z\right)$ and ($2 E, 2^{\prime} Z$): $3.76,3.83(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, 2 \mathrm{x}$ COOMe).
$29300\left(2 E, 2^{\prime} E\right): 1.22\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.14\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.11\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H} \mathbf{C}^{\prime}\right), 7.20-7.71$ DMSO-d $_{6} \quad(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}(\mathrm{Ph})), 7.76\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 7.85\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 7.89(1 \mathrm{H}$, br.d, $\mathrm{C} H \mathrm{NH}), 8.28\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.50(1 \mathrm{H}$, ddd, $\left.\mathrm{H}_{6^{\prime}}\right), 9.53\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 11.57(1 \mathrm{H}$, br.d, CHNH$), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.3 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=12.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$.
($2 \mathrm{Z}, 2^{\prime} E$): $\left.1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.16\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.09\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right)^{\prime}\right), 7.75(1 \mathrm{H}$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 7.76\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 7.99(1 \mathrm{H}$, br.d, $\mathrm{C} H \mathrm{NH}), 8.25\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.48\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 9.29\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right)$, $12.02(1 \mathrm{H}$, br.d, CHNH).
$\left(2 Z, 2^{\prime} Z\right)$ and ($2 E, 2^{\prime} Z$): $3.68,3.79(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, 2 \mathrm{x} \mathrm{COOMe})$.
$30300\left(2 E, 2^{\prime} E\right): 1.34\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.27\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.88\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}(\mathrm{Ph})\right), 7.00(1 \mathrm{H}$, CDCl_{3} ddd, H_{5} '), $7.11\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}(\mathrm{Ph})\right), 7.30\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}(\mathrm{Ph})\right), 7.38\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 7.56\left(1 \mathrm{H}\right.$, dd, $\left.\mathrm{H}_{6}(\mathrm{Ph})\right), 7.64(1 \mathrm{H}$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 8.03(1 \mathrm{H}$, br.d, $\mathrm{C} H \mathrm{NH}), 8.34\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.45\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 10.04\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 12.13(1 \mathrm{H}$, br.d, CHNH), $\mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 4}=8.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 5}=$ $1.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 5}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=1.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=8.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=12.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=11.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. ($2 \mathrm{Z}, 2^{\prime} E$): $3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe})$, $7.31\left(1 \mathrm{H}\right.$, ddd, $\mathrm{H}_{4}(\mathrm{Ph})$).
$300\left(2 E, 2^{\prime} E\right): 1.34\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.28\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH} \mathrm{CH}_{3}\right), 6.89-6.92(1 \mathrm{H}, \mathrm{ddd}, 1 \mathrm{H}(\mathrm{Ph})), 6.99$ $\mathrm{CDCl}_{3}\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{5}{ }^{\prime}\right), 7.12-7.23(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}(\mathrm{Ph})), 7.32\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 7.64\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 8.00(1 \mathrm{H}$, br.d, CHNH$), 8.34(1 \mathrm{H}$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.43\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 9.61\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 12.08(1 \mathrm{H}$, br.d, CHNH$), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=$ $1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=1.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=12.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}$. By addition of $\mathrm{D}_{2} \mathrm{O}$ the doublets at $\delta=9.61 \mathrm{ppm}$ and $\delta=12.08 \mathrm{ppm}$ disappear; the doublets at $\delta=7.32 \mathrm{ppm}$ and $\delta=8.00$ ppm change into singlets.
($2 \mathrm{Z}, 2^{\prime} E$): 3.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}$).
32
$300\left(2 E, 2^{\prime} E\right): 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.26\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.99-7.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}{ }^{\prime}, 1 \mathrm{H}(\mathrm{Ph})\right)$, $\left.\mathrm{CDCl}_{3} \quad 7.31-7.40(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}(\mathrm{Ph})), 7.65\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 7.67\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}\right)^{\prime}\right), 7.78(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.22-8.32(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}(\mathrm{Ph}))$, $8.40\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.47\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 10.23\left(1 \mathrm{H}\right.$, br.d, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 12.60(1 \mathrm{H}$, br.d, CHNH$), \mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1$ $\mathrm{Hz}, \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=1.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=12.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}$. $\left(2 Z, 2^{\prime} E\right): 1.35\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.99(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.31\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 7.63(1 \mathrm{H}$, ddd, H_{4}), $7.90(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH})$.
$300\left(2 E, 2^{\prime} E\right): 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.03\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.21(1 \mathrm{H}$, br.d, $\left.\mathrm{CDCl}_{3} \quad \mathrm{R}_{1} \mathrm{NHCH}\right), 7.29-7.32(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}(\mathrm{Ph})), 7.45-7.50(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}(\mathrm{Ph})), 7.67\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 7.83-7.88(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}(\mathrm{Ph})), 7.86(1 \mathrm{H}$, br.d, $\mathrm{C} H \mathrm{NH}), 7.95\left(1 \mathrm{H}\right.$, br.s, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 8.32\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.45\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 11.51(1 \mathrm{H}$, br.s, CHNH$), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=1.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 \mathrm{NHCH}}=12.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.9 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}$.
($2 \mathrm{Z}, 2^{\prime} E$): 3.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}$).
$34300\left(2 E, 2^{\prime} E\right): 1.30,1.31\left(6 \mathrm{H}, 2 \mathrm{xt}, 2 \mathrm{xCOCH}_{2} \mathrm{CH}_{3}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.20-4.34\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{COCOCH}_{2} \mathrm{CH}_{3}\right), 6.69(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{CDCl}_{3} \quad \mathrm{R}_{1} \mathrm{NHCH}\right), 6.86-7.03\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}{ }^{\prime}, 4 \mathrm{H}(\mathrm{Ph})\right), 7.66\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 7.81\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 8.02(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.36(1 \mathrm{H}, \mathrm{ddd}$, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.44\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 11.44(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=0.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=$ $2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=13.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$.
($2 Z, 2^{\prime} E$): $1.33,1.37\left(6 \mathrm{H}, 2 \mathrm{xt}, 2 \mathrm{x} \mathrm{COOCH} \mathrm{CH}_{3}\right), 7.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 7.63\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}\right), 8.04(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.35(1 \mathrm{H}$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.42\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 9.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 12.16(1 \mathrm{H}, \mathrm{d}, \mathrm{CHN} H)$.
35
$300\left(2 E, 2^{\prime} E\right): 1.35,1.39\left(6 \mathrm{H}, 2 \mathrm{xt}, 2 \mathrm{xCOOCH}_{2} \mathrm{CH}_{3}\right), 4.28,4.32\left(4 \mathrm{H}, 2 \mathrm{xq}, 2 \mathrm{x} \mathrm{COOCH} \mathrm{CH}_{3}\right), 6.80-6.85(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}(\mathrm{Ph})), 6.99$ $\mathrm{CDCl}_{3}\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.02-7.12(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}(\mathrm{Ph})), 7.22\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 7.64\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 8.03(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.34(1 \mathrm{H}$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.42\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6^{\prime}}\right), 9.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 12.26(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 N H C H}=12.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$.
36
$300\left(2 E, 2^{\prime} E\right): 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.77\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{3}\right), 7.02(1 \mathrm{H}$,
CDCl_{3} ddd, H_{5}), $7.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 7.55\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{4}\right), 7.66\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}\right), 7.97\left(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{R}_{1} \mathrm{NHCH}\right), 8.22\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{6}\right), 8.32$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.33(1 \mathrm{H}, \mathrm{d}, \mathrm{C} H \mathrm{NH}), 8.44\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 11.48(1 \mathrm{H}$, br.s, CHNH$), \mathrm{J}_{\mathrm{H} 3 \mathrm{H} 4}=8.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 6}=0.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=$ $2.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=0.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 5^{\prime}}=7.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 \mathrm{NHCH}}=13.4 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{CHNH}}=12.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}$.

Table 2 (continued)

Compound	MHz Solvent	δ (tetramethylsilane)
37	$\begin{gathered} 300 \\ \mathrm{CDCl}_{3} \end{gathered}$	($2 E, 2^{\prime} E$): $1.29\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.27\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$, $\left.6.77\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}\right), 7.01\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{R}_{1} \mathrm{NHCH}\right), 7.55\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{4}\right), 7.66\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}\right)^{\prime}\right), 8.00(1 \mathrm{H}$, br.s, $\left.\mathrm{R}_{1} \mathrm{NHCH}\right), 8.22\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{6}\right), 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.32\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.44\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 11.56(1 \mathrm{H}$, br.s, CHNH$), \mathrm{J}_{\mathrm{H} 3 \mathrm{H} 4}=$ $8.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 6}=0.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=2.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=0.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=1.9 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{R} 1 \mathrm{NHCH}}=12.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}$.

Table 3

${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)[\mathrm{a}](\delta$ in ppm, J in Hz)						
	$\mathrm{d}_{\text {R1NHCH }}$	$\mathrm{d}_{\mathrm{R} 1 \mathrm{~N} H C H}$	$\mathrm{d}_{\mathrm{CHNH}}$	$\mathrm{d}_{\text {CHNH }}$	$\mathrm{J}_{\mathrm{R} 1 \text { NHCH }}$	$\mathrm{J}_{\mathrm{CHNH}}$
$22\left(2 E, 2^{\prime} E\right)$	7.44	5.09	7.95	11.27	13.8	9.0
23 (2E, 2'E)	7.44	5.03	7.93	11.28	13.9	-
$24\left(2 E, 2^{\prime} E\right)$	7.26	5.07	7.96	11.31	13.6	12.7
26 (2E, 2'E)	7.80	9.93	7.80	12.00	12.6	12.3
35 (2E, 2'E)	7.22	9.57	8.03	12.26	12.2	12.2
36 (2E, 2'E)	7.46	7.97	8.33	11.48	13.4	12.5
37 (2E, 2'E)	7.45	8.00	8.29	11.56	12.7	12.6
30 [b] (2E, 2'E)	7.38	10.04	8.03	12.13	12.2	11.9
$\left(2 Z, 2^{\prime} E\right)$	7.38	10.04	8.03	12.13	12.2	11.9
$31[\mathrm{~b}]\left(2 E, 2^{\prime} E\right)$	7.32	9.61	8.00	12.08	12.4	12.2
(2Z, 2^{\prime} E)	7.32	9.61	8.00	12.08	12.4	12.2
32 [b] (2E, 2'E)	7.65	10.23	7.78	12.60	12.2	12.6
$\left(2 Z, 2^{\prime} E\right)$	7.62	10.23	7.90	12.60	12.2	12.6
$33[\mathrm{~b}]\left(2 E, 2^{\prime} E\right)$	7.21	7.95	7.86	11.51	12.9	12.9
(2Z, 2^{\prime} E)	7.21	7.95	7.86	11.51	12.9	12.9
$34\left(2 E, 2^{\prime} E\right)$	7.81	6.69	8.02	11.44	13.4	12.3
$\left(2 Z, 2^{\prime} E\right)$	7.31	9.52	8.04	12.16	13.4	12.3
$25[\mathrm{~b}]\left(2 E, 2^{\prime} E\right)$	7.92	6.78	8.01	11.53	12.8	12.1
($2 Z, 2^{\prime} E$)	7.41,	9.62	8.01	12.01	12.8	12.1
(2Z, $2^{\prime} Z$) and ($2 E, 2^{\prime} Z$)	7.41, 7.92	6.78, 9.62	2X 8.01	11.53, 12.01	12.8	12.1
27 [b] (2E, 2'E)	7.84	6.69	8.00	11.42	13.0	12.5
(2Z, $2^{\prime} E$)	7.33	9.54	8.00	11.93	13.0	12.5
($2 Z, 2^{\prime} Z$) and ($2 E, 2^{\prime} Z$)	2X 7.84	6.69, 9.54	2X 8.00	11.42, 11.93	13.0	12.5
28 [b] (2E, 2'E)	7.82	6.78	7.99	11.43	13.3	12.5
(2Z, 2^{\prime} E)	7.31	9.59	7.99	12.00	13.3	12.5
(2Z, $2^{\prime} Z$) and ($2 E, 2^{\prime} Z$)	2X 7.82	6.78, 9.59	2X 7.99	11.43, 12.00	13.3	12.5
29 [b] (2E, 2'E)	7.85	9.53	7.89	11.57	12.6	12.5
(2Z, $\left.2^{\prime} E\right)$	7.76	9.29	7.99	12.02	12.6	12.5
$\left(2 Z, 2^{\prime} Z\right)$ and (2E, $\left.2^{\prime} Z\right)$	7.76, 7.85	9.29, 9.53	7.89, 7.99	11.57, 12.02	12.6	12.5

[a] Spectra of compounds 26 and 29 were obtained in dimethyl sulfoxide- d_{6} as solvent. [b] The similar chemical shifts and coupling constants for $\mathrm{R}_{1} \mathrm{NHCH}, \mathrm{R}_{1} \mathrm{~N} H C H, \mathrm{C} H \mathrm{NH}$, and CHNH for $\left(2 E, 2^{\prime} E\right)$ and ($2 Z, 2^{\prime} E$) isomers in ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra of compounds $\mathbf{3 0 - 3 3}$ and for some isomers in ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra of compounds $\mathbf{2 5}, \mathbf{2 7 - 2 9}$ result in broad singlets and broad doublets due to overlapping.
(HMBC) experiments. The HMBC nmr experiment of compound 5 in deuteriochloroform solution at room temperature shows that the compound exists in one isomeric form. The orientation around the $\mathrm{C}=\mathrm{C}$ double bond was deduced from the coupling constant ${ }^{3}{ }^{13} \mathrm{C}=\mathrm{O},{ }^{1} \mathrm{H}=4.5 \mathrm{~Hz}$, which indicates the (E) orientation (Figure 1). The ${ }^{1} \mathrm{H} \mathrm{nmr}$ chemical shifts and coupling constants for compound $5[\delta(\mathrm{CHNH})=7.92 \mathrm{ppm}$, $\left.\delta(\mathrm{CHNH})=11.02 \mathrm{ppm}, \mathrm{J}_{\mathrm{CH}-\mathrm{NH}}=12.8 \mathrm{~Hz}\right]$ are of similar values as those for compound $\mathbf{6}[\delta(\mathrm{CHNH})=7.93 \mathrm{ppm}$, $\left.\delta(\mathrm{CHNH})=11.02 \mathrm{ppm}, \mathrm{J}_{\mathrm{CH}-\mathrm{NH}}=12.4 \mathrm{~Hz}\right]$.
The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra of compounds $\mathbf{7}$ and $\mathbf{8}$ in deuteriochloroform exhibit besides the signals characteristic for pyridine ring, ethyl and methyl groups in esters, and
dimethylaminomethylene group, a doublet at $\delta=7.90-7.93$ ppm for CHNH and $\delta=11.52-11.58 \mathrm{ppm}$ for CHNH with the coupling constant $\mathrm{J}_{\mathrm{CHNH}}=12.5-12.6 \mathrm{~Hz}$, thus indicating

(E)

5
Figure 1

Table 4
${ }^{13} \mathrm{C} \mathrm{nmr}$ Data

Compound	MHz Solvent	δ (tetramethylsilane)
5	$\begin{gathered} 75.5 \\ \mathrm{CDCl}_{3} \end{gathered}$	$\begin{aligned} & 14.70\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 50.16\left(\mathrm{COOCH}_{3}\right), 52.51\left(\mathrm{CH}_{2} \mathrm{NH}\right), 59.48\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 97.04,118.73,122.34 \text {, } \\ & 135.95,146.19,153.21,157.58,167.92,170.23 . \end{aligned}$
7	$\begin{gathered} 75.5 \\ \mathrm{CDCl}_{3} \end{gathered}$	$15.00\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 43.12\left(\mathrm{~N}_{\left(\mathrm{CH}_{3}\right)}\right)$, $51.75\left(\mathrm{COOCH}_{3}\right), 59.64\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 96.66,101.11,118.75$, 122.51, 136.16, 144.81, 146.42, 155.66, 158.28, 168.46, 168.55.
8	75.5 CDCl_{3}	14.96, $15.00\left(2 \mathrm{x} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 43.07\left(\mathrm{~N}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 59.61,60.36\left(2 \mathrm{x} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 96.49,101.50,118.72 \text {, }}^{\text {, }}\right.$ 122.47, 136.16, 144.27, 146.40, 155.58, 158.34, 167.98, 168.49.
26	$\begin{gathered} 75.5 \\ \text { DMSO-d }_{6} \end{gathered}$	$\begin{aligned} & 15.05\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 52.20\left(\mathrm{COOCH}_{3}\right), 56.52(\mathrm{OMe}), 59.37\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 96.15,106.11,111.83,113.43 \text {, } \\ & 119.18,121.69,121.99,122.76,129.91,136.61,136.94,146.89,147.80,151.48,157.62,166.84,167.59 . \end{aligned}$
29 [a]	$\begin{gathered} 75.5 \\ \text { DMSO-d } \end{gathered}$	$\begin{aligned} & 15.01,15.05\left(2 \mathrm{X} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 52.01,52.21\left(2 \mathrm{X} \mathrm{COOCH}_{3}\right), 59.41,59.66\left(2 \mathrm{X} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 96.22,97.37,106.86 \text {, } \\ & \text { 107.33, 116.57, 116.66, 116.95, 117.04, 117.75, 117.82, 118.05, 118.16, 119.20, 119.36, 120.39, 120.55, 120.64, } \\ & \text { 120.80, 122.02, 122.11, 135.03, 136.61, 136.68, 137.04, 138.81, 139.40, 139.43, 146.86, 147.01, 148.84, 151.20, } \\ & 151.62,154.07,154.81,157.59,157.68,166.16,166.31,167.47,167.60 . \end{aligned}$

[a] The assigments of two major isomers in ${ }^{13} \mathrm{C}$ nmr spectrum are based on the signals of aliphatic groups. The assigments of other signals were not possible due to overlapping and ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ couplings.
that the orientation of protons in NHCH structural element is trans (antiperiplanar). The orientation around the $\mathrm{C}=\mathrm{C}$ double bonds was determined on the basis of HMBC nmr experiment for compound 7 , indicating that compound exists in one isomeric form. Both coupling constants, ${ }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }_{\mathrm{H}}{ }^{1}$ are 3 Hz and 4 Hz , respectively, indicating that the orientation around $\mathrm{C}(2)=\mathrm{C}(3)$ is (Z), while the orientation around the $\mathrm{C}\left(2^{\prime}\right)=\mathrm{C}\left(3^{\prime}\right)$ is (E). (Figure 2).

Figure 2

The ${ }^{1} \mathrm{H} n \mathrm{~nm}$ spectra of crude compounds 22-37 [24] exhibit one, two or four sets of signals, indicating that these compounds exist in one, two or four isomeric forms. The ratio of isomers was determined on the basis of peaks for methyl and ethyl groups in esters, except for compounds 27 and 34 , due to overlapping of signals.
Compound 26 exists as a single isomer. The HMBC nmr experiment in dimethyl sulfoxide- d_{6} (at 302 K), shows on the basis of the coupling constants ${ }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }_{\mathrm{H}}=9 \mathrm{~Hz}$ for ${ }^{1} \mathrm{H}-\mathrm{C}(3)=\mathrm{C}(2)-{ }^{13} \mathrm{COOMe}$ and ${ }^{3 \mathrm{~J} 13} \mathrm{CO},{ }_{\mathrm{H}}{ }^{1}=4 \mathrm{~Hz}$ for ${ }^{1} \mathrm{H}-$ $\mathrm{C}\left(3^{\prime}\right)=\mathrm{C}\left(2^{\prime}\right)-{ }^{13} \mathrm{COOEt}$, that the compound exists in the $\left(2 E, 2^{\prime} E\right)$ form. (Figure 3). In ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum, compound 29 shows four sets of signals in the ratio of 13:9:2:1. The HMBC nmr experiment in dimethyl sulfoxide- d_{6} (at 302

Figure 3

K) indicates ($2 E, 2^{\prime} E$) orientation $\left({ }^{3} \mathrm{~J}^{13}{ }_{\mathrm{CO}},{ }_{1}{ }_{\mathrm{H}}=9 \mathrm{~Hz}\right.$ for ${ }^{1} \mathrm{H}-\mathrm{C}(3)=\mathrm{C}(2)-{ }^{13} \mathrm{COOMe}$, and ${ }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }_{\mathrm{H}}=4 \mathrm{~Hz}$ for $\left.{ }^{1} \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)=\mathrm{C}\left(2^{\prime}\right)-{ }^{13} \mathrm{COOEt}\right)$ and $\left(2 Z, 2^{\prime} E\right)$ orientation $\left({ }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }_{\mathrm{H}}=4 \mathrm{~Hz}\right.$ for ${ }^{1} \mathrm{H}-\mathrm{C}(3)=\mathrm{C}(2)-{ }^{13} \mathrm{COOMe}$, and ${ }^{3}{ }^{13}{ }^{13} \mathrm{CO},{ }^{1} \mathrm{H}=4 \mathrm{~Hz}$ for $\left.{ }^{1} \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)=\mathrm{C}\left(2^{\prime}\right)-{ }^{13} \mathrm{COOEt}\right)$ for two major isomers, respectively. (Figure 4). The determination of orientations around the double bonds for two minor isomers was not possible due to low ratios and overlapping with the signals of major isomers.

major isomer

29
minor isomer

Figure 4

The orientation around the double bonds for all other compounds were determined on the basis of analogous chemical shifts for CHNH and CHNH , and $\mathrm{J}_{\mathrm{CH}-\mathrm{NH}}$ coupling constants in ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra. In all cases the orientation in major isomer is (E) for $\mathrm{C}(2)=\mathrm{C}(3)$ and (E) for $\mathrm{C}\left(2^{\prime}\right)=\mathrm{C}\left(3^{\prime}\right)$ and in the second major isomer (or in the minor isomer for compounds which exist in two isomeric forms, respectively) is (Z) around the $\mathrm{C}(2)=\mathrm{C}(3)$ and (E) around the $\mathrm{C}\left(2^{\prime}\right)=\mathrm{C}\left(3^{\prime}\right)$ double bonds. Assignments of signals for the two minor isomers, $\left(2 Z, 2^{\prime} Z\right)$ and $\left(2 E, 2^{\prime} Z\right)$, for those compounds, which exist as four isomeric forms, were not possible. (Table 5).

General Procedure for the Preparation of Alkyl (Z)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3-dimethylaminopropenoates 7, 8 .

To compound $\mathbf{5}$ or $\mathbf{6}(10 \mathrm{mmol})$ suspended in dry toluene (10 ml), Bredereck's reagent (20 mmol) was added and the mixture was heated under reflux for several hours. The volatile compounds were evaporated in vacuo and the mixture of ethyl acetate $(5 \mathrm{ml}) / n$-heptane $(15 \mathrm{ml})$ was added. The precipitate was collected by filtration and washed with ether. The following compounds were prepared in this manner: methyl (Z)-2-[(E)-2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3dimethylaminopropenoate (7) and ethyl (Z)-2-[(E)-2-ethoxy-carbonyl-2-(2-pyridinyl)ethenyl]amino-3-dimethylamino-

Table 5
HMBC nmr Data
Compound \(\left.\begin{array}{cc}Solvent \\

Temp.\end{array}\right]\)| | |
| :---: | :---: |
| $\mathbf{5}$ | CDCl_{3} |
| | 302 K |
| $\mathbf{7}$ | CDCl_{3} |
| $\mathbf{2 6}$ | 302 K |
| | DMSO-d $_{6}$ |
| $\mathbf{2 9}$ | 302 K |
| | DMSO-d $_{6}$ |
| | 302 K |

$$
\begin{aligned}
& \text { One isomer (E): }{ }^{3}{ }^{13}{ }^{13} \mathrm{CO},{ }^{1}{ }_{\mathrm{H}}=4.5 \mathrm{~Hz} \\
& \text { One isomer (2Z, 2'E): }{ }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }_{\mathrm{H}}=3 \mathrm{~Hz} \text { for }{ }^{1} \mathrm{H}-\mathrm{C}(3)=\mathrm{C}(2)-{ }^{13} \mathrm{COOMe} \\
& { }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }^{1} \mathrm{H}=4 \mathrm{~Hz} \text { for }{ }^{1} \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)=\mathrm{C}\left(2^{\prime}\right)-{ }^{13} \mathrm{COOEt} \\
& \text { One isomer (2E, 2'E): }{ }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }_{\mathrm{H}}{ }^{1}=9 \mathrm{~Hz} \text { for }{ }^{1} \mathrm{H}-\mathrm{C}(3)=\mathrm{C}(2)-{ }^{13} \mathrm{COOMe} \\
& { }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }^{1} \mathrm{H}=4 \mathrm{~Hz} \text { for }{ }^{1} \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)=\mathrm{C}\left(2^{\prime}\right)-{ }^{13} \mathrm{COOEt} \\
& \text { Four isomers (13:9:2:1) } \\
& \text { Major isomer }\left(2 E, 2^{\prime} E\right):{ }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }^{1} \mathrm{H}=9 \mathrm{~Hz} \text { for }{ }^{1} \mathrm{H}-\mathrm{C}(3)=\mathrm{C}(2)-{ }^{13} \mathrm{COOMe} \\
& { }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }_{\mathrm{H}}{ }^{1}=4 \mathrm{~Hz} \text { for }{ }^{1} \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)=\mathrm{C}\left(2^{\prime}\right)-{ }^{13} \mathrm{COOEt} \\
& \text { Minor isomer (2Z, } \left.2^{\prime} E\right):{ }^{3}{ }^{13}{ }^{13} \mathrm{CO},{ }_{\mathrm{H}}{ }^{1}=4 \mathrm{~Hz} \text { for }{ }^{1} \mathrm{H}-\mathrm{C}(3)=\mathrm{C}(2)-{ }^{13} \mathrm{COOMe} \\
& { }^{3} \mathrm{~J}^{13} \mathrm{CO},{ }^{1} \mathrm{H}=4 \mathrm{~Hz} \text { for }{ }^{1} \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)=\mathrm{C}\left(2^{\prime}\right)-{ }^{13} \mathrm{COOEt}
\end{aligned}
$$

EXPERIMENTAL

Melting points were taken on a Kofler micro hot stage. The ${ }^{1} \mathrm{H}$ nmr spectra were obtained on a Bruker Avance DPX 300 (300 MHz) spectrometer in such solvent as dimethyl sulfoxide- d_{6} and deuteriochloroform with tetramethylsilane as internal standard. The elemental analyses for C, H and N were obtained on a Perkin-Elmer CHN Analyser 2400.

General Procedure for the Preparation of Alkyl (E)-N-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]glycinates 5, 6.

The mixture of ethyl 2-pyridinylacetate (1) ($20 \mathrm{mmol}, 3 \mathrm{ml}$) and Bredereck's reagent ($25 \mathrm{mmol}, 5 \mathrm{ml}$) was stirred in the oil bath at $85^{\circ} \mathrm{C}$ in an argon atmosphere for 1.5 hours. Then ethanol $(10 \mathrm{ml})$ was added and the volatile compounds were evaporated in vacuo. The obtained oily residue, ethyl 3-dimethylamino-2-(2pyridinyl)propenoate (2), was without further purification dissolved in ethanol (25 ml), glycine alkyl ester hydrochloride $\mathbf{3}$ or $\mathbf{4}$ (20 mmol) was added, and the mixture was heated under reflux for 1.5 hours. The volatile compounds were evaporated in vacuo and water (30 ml) was added. The precipitate, which had been formed in refrigerator, was collected by filtration and washed with ether (5 ml). The following compounds were prepared in this manner: methyl (E)- N-[2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]glycinate (5) from glycine methyl ester hydrochloride (3) ($20 \mathrm{mmol}, 2.5 \mathrm{~g}$) and ethyl (E)- N-[2-ethoxycarbonyl-2-(2pyridinyl)ethenyllglycinate (6) from glycine ethyl ester hydrochloride (4) ($20 \mathrm{mmol}, 2.8 \mathrm{~g}$). Experimental and analytical data are given in Tables 1, 2, and 5.
propenoate (8). Experimental and analytical data are given in Tables 1, 2, 4, and 5.

General Procedure for the Preparation of β-Alkylamino- α, β -didehydro- α-amino Acid Derivatives 22-24.

To compound $7(0.5 \mathrm{mmol}, 160 \mathrm{mg})$ the corresponding aliphatic amine $9-11(0.5 \mathrm{mmol})$ and acetic acid (2 ml) were added and stirred at room temperature for 24 hours. The volatile compounds were evaporated in vacuo, the appropriate solvent (3 ml) was added and the precipitate was collected by filtration.

Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-benzylaminopropenoate (22).

This compound was prepared from bezylamine hydrochloride (9) $(0.5 \mathrm{mmol}, 54 \mathrm{mg})$. The mixture of ethanol (1 ml) and water $(1 \mathrm{ml})$ was used for crystallization. Experimental and analytical data are given in Tables 1,2, and 3.
Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(4-methoxybenzyl)aminopropenoate (23).

This compound was prepared from 4-methoxybezylamine (10) $(0.5 \mathrm{mmol}, 63 \mathrm{mg})$. The mixture of ethanol $(1 \mathrm{ml})$ and water (1 ml) was used for crystallization. Experimental and analytical data are given in Tables 1, 2, and 3.
Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(4-nitro- α-methylbenzyl)aminopropenoate (24).

This compound was prepared from 4-nitro- α-methylbezylamine hydrochloride (11) ($0.5 \mathrm{mmol}, 101 \mathrm{mg}$). Acetone (2 ml)
was used for crystallization. Experimental and analytical data are given in Tables 1, 2, and 3.
General Procedure for the Preparation of β-Arylamino- α, β-dide-hydro- α-amino Acid Derivatives 25-35.
To compound $7(0.5 \mathrm{mmol}, 160 \mathrm{mg})$ or $\mathbf{8}(0.5 \mathrm{mmol}, 167 \mathrm{mg})$ the corresponding aromatic amine 12-20 $(0.5 \mathrm{mmol})$ and acetic acid (2 ml) were added and stirred at room temperature for a few minutes to 24 hours. The volatile compounds were evaporated in vacuo, the appropriate solvent (3 ml) was added and the precipitate was collected by filtration.
Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-phenylaminopropenoate (25) and (Z)-2-[(E)-, (Z)-2-$[(Z)-$, and $(E)-2-[(Z)$ - Isomers.
This compound was prepared from compound $7(0.5 \mathrm{mmol}$, $160 \mathrm{mg})$ and alanine ($\mathbf{1 2) (0 . 5 \mathrm { mmol } , 4 7 \mathrm { mg }) , 2 4 \text { hours, in }}$ 11:9:2:1 ratio. The mixture of methanol (1 ml) and water (1 ml) was used for crystallization. Two isomers, $(E)-2-[(E)$ - and $(Z)-2-$ $[(E)-$, were separated with radial chromatography (petrolether/ethyl acetate $=5: 1$). Experimental and analytical data are given in Tables 1, 2, and 3.

Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(2-methoxyphenyl)aminopropenoate (26).

This compound was prepared from compound $7(0.5 \mathrm{mmol}$, $160 \mathrm{mg})$ and 2-methoxyaniline ($\mathbf{1 3}$) $(0.5 \mathrm{mmol}, 62 \mathrm{mg}), 24$ hours. The mixture of methanol (1 ml) and water (1 ml) was used for crystallization. Experimental and analytical data are given in Tables 1, 2, 3, and 5.
Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(4-methoxyphenyl)aminopropenoate (27) and (Z)-2-$[(E)-,(Z)-2-[(Z)-$, and $(E)-2-[(Z)$ - Isomers.

This compound was prepared from compound $7(0.5 \mathrm{mmol}, 160$ $\mathrm{mg})$ and 4-methoxyaniline (14) $(0.5 \mathrm{mmol}, 61 \mathrm{mg}), 24$ hours. The ratio was not defined. Methanol (2 ml) was used for crystallization. Experimental and analytical data are given in Tables 1,2, and 3.

Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(4-flourophenyl)aminopropenoate (28) and (Z)-2-[(E)-, $(Z)-2-[(Z)-$, and $(E)-2-[(Z)$ - Isomers.
This compound was prepared from compound $7(0.5 \mathrm{mmol}$,
 11:6:1:1 ratio. Methanol (2 ml) was used for crystallization. Experimental and analytical data are given in Tables 1, 2, and 3.
Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(3-chloro-4-flourophenyl)aminopropenoate (29) and (Z)-2-[(E)-, (Z)-2-[(Z)-, and (E)-2-[(Z)- Isomers.

This compound was prepared from compound $7(0.5 \mathrm{mmol}$, 160 mg) and 3-chloro-4-fluoroaniline (16) ($0.5 \mathrm{mmol}, 74 \mathrm{mg}$), 24 hours, in 13:9:2:1 ratio. Methanol (2 ml) was used for crystallization. Experimental and analytical data are given in Tables $1,2,3$, and 5.
Methyl (E)-2-[(E)-2-[2-Ethoxycarbonyl-2-(2-pyridinyl)-ethenyl]amino-3-(2-bromophenyl)aminopropenoate (30) and (Z)-2-[(E)- Isomer.

This compound was prepared from compound $7(0.5 \mathrm{mmol}$, 160 mg) and 2-bromoaniline ($\mathbf{1 7}$) ($0.5 \mathrm{mmol}, 83 \mathrm{mg}$), 24 hours, in

6:1 ratio. Methanol (2 ml) was used for crystallization. Experimental and analytical data are given in Tables 1, 2, and 3.
Methyl (E)-2-[(E)-2-[2-Ethoxycarbonyl-2-(2-pyridinyl)-ethenyl]amino-3-(3-bromophenyl)aminopropenoate (31) and (Z)-2-[(E)- Isomer.

This compound was prepared from compound $7(0.5 \mathrm{mmol}$,
 7:1 ratio. Methanol (2 ml) was used for crystallization. Experimental and analytical data are given in Tables 1, 2, and 3.
Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(2-nitrophenyl)aminopropenoate (32) and (Z)-2-[(E)Isomer.

This compound was prepared from compound $7(0.5 \mathrm{mmol}$, 160 mg) and 2-nitroaniline ($\mathbf{1 9)}(0.5 \mathrm{mmol}, 70 \mathrm{mg}), 10$ minutes, in $10: 1$ ratio. Methanol (2 ml) was used for crystallization. Experimental and analytical data are given in Tables 1, 2, and 3.
Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(3-nitrophenyl)aminopropenoate (33) and (Z)-2-[(E)Isomer.

This compound was prepared from compound $7(0.5 \mathrm{mmol}$, 160 mg) and 3-nitroaniline (20) ($0.5 \mathrm{mmol}, 70 \mathrm{mg}$), 24 hours, in 8:1 ratio. Methanol (2 ml) was used for crystallization. Experimental and analytical data are given in Tables 1, 2, and 3.
Ethyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(4-methpxyphenyl)aminopropenoate (34) and (Z)-2-[(E)- Isomer.

This compound was prepared from compound $\mathbf{8}(0.5 \mathrm{mmol}, 167$ $\mathrm{mg})$ and 4-methoxyaniline (14) $(0.5 \mathrm{mmol}, 61 \mathrm{mg}), 24$ hours. The ratio was not defined. Ethanol (2 ml) was used for crystallization. Experimental and analytical data are given in Tables 1, 2, and 3.

Ethyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(4-fluoro-3-chlorophenyl)aminopropenoate (35).

This compound was prepared from compound $8(0.5 \mathrm{mmol}$, 167 mg) and 4-fluoro-3-chloroaniline ($\mathbf{1 6}$) ($0.5 \mathrm{mmol}, 74 \mathrm{mg}$), 24 hours. Ethanol (2 ml) was used for crystallization. Experimental and analytical data are given in Tables 1, 2, and 3.
The Preparation of β-Heteroarylamino- α, β-didehydro- α-amino Acid Derivatives 36, 37.
Methyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(5-chloro-2-pyridinyl)aminopropenoate (36).

To compound 7 ($0.5 \mathrm{mmol}, 160 \mathrm{mg}$) 2-amino-5-chloropyridine (21) $(0.5 \mathrm{mmol}, 64 \mathrm{mg})$ and acetic acid (2 ml) were added and stirred at room temperature for 4 days. The volatile compounds were evaporated in vacuo and ethanol (2 ml) was added. The precipitate was collected by filtration and washed with ethanol. Experimental and analytical data are given in Tables 1, 2, and 3.
Ethyl (E)-2-[(E)-2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]-amino-3-(5-chloro-2-pyridinyl)aminopropenoate (37).

To compound $\mathbf{8}(0.5 \mathrm{mmol}, 167 \mathrm{mg})$ 2-amino-5-chloropyridine (21) $(0.5 \mathrm{mmol}, 64 \mathrm{mg})$ and acetic acid $(2 \mathrm{ml})$ were added and stirred at room temperature for 24 hours. The volatile compounds were evaporated in vacuo and ethanol (2 ml) was added. The precipitate was collected by filtration and washed with ethanol. Experimental and analytical data are given in Tables 1, 2, and 3.

Acknowledgment.

The financial support by the Ministry of Science and Technology of Slovenia is gratefully acknowledged.

REFERENCES AND NOTES

[1] L. Selič, S. Golič Grdadolnik, and B. Stanovnik, Helv. Chim. Acta, 80, 2418 (1997).
[2] R. Toplak, L. Selič, G. Soršak, and B. Stanovnik, Heterocycles, 45, 555 (1997).
[3] L. Pizzioli, B. Ornik, J. Svete, and B. Stanovnik, Helv. Chim. Acta, 81, 231 (1998).
[4] J. Smodiš and B. Stanovnik, Tetrahedron, 54, 9799 (1998).
[5] R. Toplak, J. Svete, B. Stanovnik, and S. Golič Grdadolnik, J. Heterocyclic Chem., 36, 225 (1999).
[6] R. Toplak, J. Svete, S. Golič Grdadolnik, and B. Stanovnik, Collect. Czech. Chem. Commun., 64, 177 (1999).
[7] L. Selič, S. Golič Grdadolnik, and B. Stanovnik, Heterocycles, 49, 133 (1998).
[8] R. Toplak, M. Zucchiati, S. Golič Grdadolnik, and B. Stanovnik, Heterocycles, 50, 853 (1999).
[9] U. Bratušek, A. Hvala, and B. Stanovnik, J. Heterocyclic Chem., 35, 1281 (1998).
[10] S. Rečnik, R. Toplak, J. Svete, L. Pizzioli, and B. Stanovnik, J. Heterocyclic Chem., 37, 783 (2000).
[11] L. Selič and B. Stanovnik, J. Heterocyclic Chem., 35, 1527 (1999).
[12] M. Malešič, A. Krbavčič, A. Golobič, L. Golič, and B. Stanovnik, J. Heterocyclic Chem., 34, 1757 (1997).
[13] L. Selič and B. Stanovnik, Synthesis, 1999, 479.
[14] L. Selič and B. Stanovnik, Helv. Chim. Acta, 81, 1634 (1998).
[15] L. Selič, R. Jakše, K. Lampič, L. Golič, S. Golič Grdadolnik, and B. Stanovnik, Helv. Chim. Acta, 83, 2802 (2000).
[16] L. Jukić, J. Svete, A. Golobič, L. Golič, and B. Stanovnik, Heterocycles, 53, 805 (2000).
[17] M. Škof, J. Svete, B. Stanovnik, L. Golič, S. Golič Grdadolnik, and L. Selič, Helv. Chim. Acta, 81, 2332 (1998).
[18] M. Škof, J. Svete, M. Kmetič, S. Golič Grdadolnik, and B. Stanovnik, Eur. J. Org. Chem., 1999, 1581.
[19] M. Škof, J. Svete, and B. Stanovnik, Heterocycles, 51, 1051 (1999).
[20] M.Skof, J. Svete, and B. Stanovnik, Heterocycles, 52, 845 (2000).
[21] M. Škof, J. Svete, and B. Stanovnik, Heterocycles, 53, 339 (2000).
[22] M. Škof, J. Svete, and B. Stanovnik, J. Heterocyclic Chem., 37, 703 (2000).
[23] For reviews see: [a] B. Stanovnik, J. Heterocyclic Chem., 36, 1581 (1999); [b] B. Stanovnik and J. Svete, Synlett, 2000, 1077; [c] B. Stanovnik and J. Svete, "Alkyl 3-(Dimethylamino)propenoates and Related Compounds as Useful Building Blocks in the Synthesis of Heterocyclic Systems - Approaches Towards the Synthesis of Natural Products and their Close Analogs" in "Targets in Heterocyclic Systems. Chemistry and Properties", O. A. Attanasi, D. Spinelli, eds., Vol. 4, Reviews and Accounts on Heterocyclic Chemistry, Italian Society of Chemistry, Rome 2000, pp. 105-137.
[24] The samples of crude products $\mathbf{2 2} \mathbf{- 3 7}$, isolated from the reaction mixtures were used without further purification for determination of isomer ratios by ${ }^{1} \mathrm{H} \mathrm{nmr}$ techniques.

